Structural Guide

Structural loads, structural analysis and structural design are simply explained with the worked example for easiness of understanding. Element designs with notes and discussions have added to get comprehensive knowledge. Also, construction materials, shoring system design, water retaining structures, crack width calculations, etc. have discussed in addition to other aspects. 

Biaxial Bending for Eurocode 2

Biaxial Bending for Eurocode 2 Guide

Brace Non-Slender Column DesignBiaxial Bending

Design of column between the ground floor and first floor. Assume the foundation is at the ground floor level. Hence, moments at the ground floor level are considered as zero amusing pin support conditions.

  1. 400mm square column
  2. Axial Load NEd = 3000kN
  3. Moments at top My = 110kNm and Mz = 130kNm
  4. Moments at Bottom are zero
  5. fck = 30N/mm2
  6. fyk = 500N/mm2
  7. Nominal Cover 25mm
  8. Floor to Floor height 4000mm
  9. Depth of the beam supported by the column 500mm

The following column design calculated is done for biaxial bending. This method is done with trial and error method as it has to be done until (MEdz / MRdz)a + (MEdy / MRdy) < 1. However, the manual for the design of concrete building structures to Eurocode 2 and the book, Reinforced concrete design to Eurocode 2 written by Bill Mosley, John Bungey and Ray Hulse have suggested the old method, which is in BS 8110 when a column design for biaxial bending. The old method is straight forward than the method considered following calculations because once we have found the biaxial bending moments, we can find the reinforcement area easily.

Mz  = 130 kNm

My  = 110 kNm

NEd = 3000 kN
Clear height               = 4000-500 = 3500mm                   

Effective length          = lo       = factor * l

Factor                         = 0.85 (concise Eurocode 2, Table 5.1. This may more conservative).

lo                                  = 0.85* 3500    = 2975mm                                 

Slenderness λ            = lo/i

i   = radios of gyration       = h/√12

λ   = lo/( h/√12 )       = 3.46*lo/h    = 3.46*2975/400     = 25.73         

Limiting Slenderness λlim

λlim                               = 20ABC/√n

A                                  = 0.7 if effective creep factor is unknown

B                                  = 1.1 if mechanical reinforcement ratio is unknown          

C                                  = 1.7 – rm   = 1.7-Mo1/Mo2

Mo1                              = 0 kNm

Mo2                              = 130kNm  where lMo2l ≥ lMo1l
C                                  = 1.7 – 0/130)  = 1.7

n                                  = NEd / (Ac*fcd)

fcd                                = fck / 1.5   = (30/1.5)*0.85   = 17

n                                  = 3000*1000 / (400*400*17)  = 0.94 

λlim                              = 20*0.7*1.1*1.7/√0.94    = 27 

λlim > λ hence, column is not slender.
Calculation of design moments
Column has moments in both directions.First find the critical moment.

Consider My,

Assume there is no moment at ground floor level as foundations are at that level.
MEdy                             = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}

Mo2y                             = Max {Mtop, Mbottom} + ei*NEd   = 110 + (2.975/400)*3000 ≥  Max(400/30, 20)*3000 = 110+22.3 ≥ 60  = 132.3kNm  > 60kNm

Mo1y                            = 0                                            

MoEdy                           = 0.6*Mo2+ 0.4*Mo1 ≥ 0.4*Mo2 = 0.6*132.3 + 0.4* (0) ≥ 0.4*132.3  = 79.4≥ 52.9

M2y                              = 0 , Column is not slender
MEdy                             = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}  = Max{132.3, 79.4+0, 0 + 0.5*0}  = 132.3 kNm

Consider Mz,

Assume there is no moment at ground floor level as foundations are at that level.
MEdz                             = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}Mo2z = Max {Mtop, Mbottom} + ei*NEd = 130 + (2.975/400)*3000 ≥  Max(400/30,20)*3000 = 130+22.3 ≥ 60 = 152.3 kNm  >  60 kNm
Mo1z                            = 0                                            

MoEdz                           = 0.6*Mo2+ 0.4*Mo1 ≥ 0.4*Mo2  = 0.6*152.3 + 0.4*0) ≥ 0.4*152.3  = 91.4≥ 60.9
M2z                              = 0 , Column is not slender
MEdz                             = Max{Mo2, MoEd +M2, Mo1 + 0.5M2} = Max{152.3, 91.4+0, 0 + 0.5*0} = 152.3 kNm
Imperfection needs to be considered only in one direction, which has the most unfavorable effect.

Therefore,

MEdz                             = 132.3kNm and MEdy = 130kNm
Consider Critical Moment

MEdz                             = 132.3kNm
MEd/ [b*(h2)*fck]         = (132.3*10^6) / [400*(400^2)*30] = 0.07  = (3000*10^6) / (400*400*30 = 0.63
Assume 25mm diameter bars as main reinforcement and 10mm bars as shear links
d2                                 = 25+10+25/2 = 47.5mm
d2/h                             = 47.5 / 400 = 0.12
Note: d2/h = 0.15 chart is referred to find the reinforcement area, but it is more conservative. Interpolation between charts d2/h = 0.10 and d2/h = 0.15 can be used to find more accurate answer.
As*fyk / b*h*fck            = 0.3As   = 0.3*400*400*30 / 500 = 2880mm2

Provides six 25mm bars (As Provided 2940mm2)Six 25mm bars are provided for bending, but column have to be reinforced symmetrically. Therefor total no of base provided for the column are eight.

Check for Biaxial Bending

Further, a check is not required if

0.5 ≤ (λy/ λz) ≤  2.0 For rectangular column

and

0.2 ≥ (ey/heq)/(ez/beq) ≥ 5.0

Here λand λz are slenderness ratios

λy is equal to λz as beam height is each direction is similar.

Therefore  λyz = 1 

Hence, λyz < 2 and > 0.5 OK

ey/heq  =  (MEdz / NEdheq

ez/beq  =  (MEdy / NEdbeq     

(ey/heq)/(ez/beq) = MEdz / MEdy  

Here h=b=heq=beq, column is square

MEdz  = 130 kNm

MEdy  = 132.3 kNm  

(ey/heq)/(ez/beq)          = 130/132.3  = 0.98 > 0.2 and < 5

Therefore, biaxial check is required.
(MEdz / MRdz)a + (MEdy / MRdy)a ≤  1

MEdz                             = 130kNm

MEdy                             =132.3kNm

MRdz and MRdy are the moment resistance in respective direction, corresponding to an axial load NEd.

For symmetric reinforcement section

MRdz                            = MRdy

As Provided                 = 2940mm2
As*fyk / b*h*fck           = 2940*500/(400*400*30) = 0.31

NEd / (b*h*fck)             = 0.63

From the chart d2/h =0.15

MEd/ [b*(h2)*fck]         = 0.075

MEd                              = 0.098*400*400*400*30 = 144kNm
a                               = an exponent

a                               = 1.0 for NEd / NRd = 0.1

a                               = 1.5 for NEd / NRd = 0.7

NEd                              = 3000kN
NRd                              = Ac*fcd + As*fyd

NRd                              = 400*400*(0.85*30/1.5) + 3920* (500/1.15) = 4424kN                                      
NEd / NRd                     = 3000/4424 = 0.68

By interpolating, a   = 1.48
(MEdz / MRdz)a + (MEdy / MRdy)a =  (130 / 144)1.48 + (132 / 144)1.48  = 1.74 > 1                                                 

Hence, check for biaxial bending is not ok

Therefore, increase the number of bars to 12 (In this design, the reinforcement along the two sides have only taken to account for this design and effect of the other reinforcement bars at in opposite direction have not been considered).Therefore no of reinforcements, which are effective for moment resistance are eight (3920mm2) and twelve are effective for axial capacity (5880mm2). 

As*fyk / b*h*fck            = 3920*500/(400*400*30) = 0.41

NEd / (b*h*fck)             = 0.63

From the chart d2/h    =0.15

MEd/ [b*(h^2)*fck]      = 0.105

MEd                               = 0.105*400*400*400*30 = 202 kNm
a                               = an exponent

a                               = 1.0 for NEd / NRd = 0.1

a                               = 1.5 for NEd / NRd = 0.7

NEd                           = 3000kN
NRd                           = Ac*fcd + As*fydNRd = 400*400*(0.85*30/1.5) + 3920* (500/1.15) = 4850kN
NEd / NRd                  = 3000/4850  = 0.62

By interpolating,

a                                = 1.43
(MEdz / MRdz)a + (MEdy / MRdy)a =  (130 / 202 )1.43 + (132 / 202 )1.43 = 1 (nearly equals to one)

Hence, provided reinforces are ok.

For more about Biaxial Bending for Eurocode 2 contact Structural Guide.

Share
Scroll to Top