Structural Guide

Structural loads, structural analysis and structural design are simply explained with the worked example for easiness of understanding. Element designs with notes and discussions have added to get comprehensive knowledge. Also, construction materials, shoring system design, water retaining structures, crack width calculations, etc. have discussed in addition to other aspects. 

Design of Non Slender Column to Eurocode 2

The design of non slender column according to Eurocode 2 is discussed in this article. This article guides the design procedures to be followed.

Brace Non-Slender Column Design

  • Edge column
  • 300mm square column
  • Axial Load 1500kN
  • Moment at top -40kNm
  • Moment at Bottom 45kNm
  • fck 30N/mm2
  • fyk 500N/mm2
  • Nominal Cover 25mm
  • Floor to Floor height 4250mm
  • Depth of the beam supported by the column 450mm

Mtop                     = -40kNm
Mbottom             = 45kNm
NEd                      = 1500kN

Clear height        = 4250-450
                           = 3800mm
Effective length  = lo
                            = factor * l
Factor                  = 0.85 (concise Eurocode 2, Table 5.1. This may more conservative).
lo                         = 0.85* 3800
                            = 3230mm

Slenderness λ   = lo/i

i                       = radios of gyration  = h/√12

λ  = lo/( h/√12 )  = 3.46*lo/h = 3.46*3230/300 = 37.3

Limiting Slenderness λlim

λlim                     = 20ABC/√n

A                      = 0.7 if effective creep factor is unknown

B                      = 1.1 if mechanical reinforcement ratio is unknown          

C                      = 1.7 – rm = 1.7-Mo1/Mo2

Mo1  = -40kNm

Mo2                  = 45kNm  where lMo2l ≥ lMo1l
C                      = 1.7 – (-40/45) = 2.9

n                       = NEd / (Ac*fcd)

fcd                    = fck / 1.5 = (30/1.5)*0.85 = 17
                        
n                       = 1500*1000 / (300*300*17)= 0.98 

λlim                     = 20*0.7*1.1*2.9/√0.98  = 45.1 

λlim > λ hence, column is not slender.

Calculation of design moments

MEd                 = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}

Mo2                 = Max {Mtop, Mbottom} + ei*NEd  = 45 + (3.23/400)*1500 ≥  Max(300/30, 20)*1500 = 57.1kNm  >  30kNm

Mo2                = Min{Mtop, Mbottom} + ei*NEd  = -40 + (3.23/400)*1500 ≥  Max(300/30, 20)*1500 = 27.9kNm

MoEd             = 0.6*Mo2+ 0.4*Mo1 ≥ 0.4*Mo2  = 0.6*57.1 + 0.4*(-27.9) ≥ 0.4*57.1  = 23.1 ≥ 22.84

M2                  = 0 , Column is not slender
MEd               = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}= Max{57.1, 23.1 +0, -27.9 + 0.5*0} = 57.1kNm

MEd / [b*(h^2)*fck]  = (57.1*10^6) / [300*(300^2)*30] = 0.07                                                  
NEd / (b*h*fck)        = (1500*10^6) / (300*300*30 = 0.56

Assume 25mm diameter bars as main reinforcement and 10mm bars as shear links

d2                  = 25+10+25/2  = 47.5mm
d2/h                = 47.5 / 300    = 0.16

Note: d2/h = 0.20 chart is reffed to find the reinforcement area, but it is more conservative. Interpolation can be used to find the exact value.

As*fyk / b*h*fck      = 0.24                    

As    = 0.24*300*300*30 / 500 = 1296mm2

Provides four 25mm bars (As Provided 1964mm2)

Check for Biaxial Bending
Further check is not required if 
0.5 ≤ ( λy/ λz) ≤  2.0 For rectangular column
and
0.2 ≥ (ey/heq)/(ez/beq) ≥ 5.0
Here λy and λz are slenderness ratios

λy is nearly equal to λz
Therefore,  λy/λz is nearly equal to one.
Hence, λy/λz < 2 and > 0.5 OK

ey/heq  =  (MEdz / NEd) heq
ez/beq  =  (MEdy / NEd) beq

(ey/heq)/(ez/beq) = MEdz / MEdy  Here h=b=heq=beq, column is square

MEdz  = 45kNm
MEdy  = 30kNm 

Minimum moment, see the calculation of Mo2 for the method of calculation note: Moments due to imperfections need to be included only in the direction where they have the most unfavorable effect – Concise Eurocode 2

(ey/heq)/(ez/beq) = 45/30
                                = 1.5 > 0.2 and < 5
Therefore Biaxial check is required.

(MEdz / MRdz)^a + (MEdy / MRdy)^a ≤  1

MEdz            = 45kNm
MEdy           = 30kNm

MRdz and MRdy are the moment resistance in the respective directions, corresponding to an axial load NEd.

For symetric reinforcement section

MRdz            = MRdy

As Provided  = 1964mm2

As*fyk / b*h*fck      = 1964*500/(300*300*30) = 0.36
                            
NEd / (b*h*fck)        = 0.56 

From the chart d2/h =0.2 

MEd / [b*(h^2)*fck]   = 0.098

MEd                       = 0.098*300*300*300*30 = 79.38kNm                             

a                               = an exponent
a                               = 1.0 for NEd/NRd = 0.1
a                               = 1.5 for NEd/NRd = 0.7
NEd                          = 1500kN
NRd                          = Ac*fcd + As*fyd
NRd                          = 300*300*(0.85*30/1.5) + 1964*(500/1.15)  = 2383.9kN                          

NEd/NRd                = 1500/2383.9
                                 = 0.63
By interpolating
a                               = 1.44

(MEdz / MRdz)^a + (MEdy / MRdy)^a =  (45 / 79.39)^1.44 + (30 / 79.38)^1.44 = 0.69 <1
Hence, Check for biaxial bending is ok
Therefore, Provide four 25mm diameter bars.

Share