Design of Non Slender Column to Eurocode 2

The design of non slender column according to Eurocode 2 is discussed in this article. This article guides the design procedures to be followed.

Brace Non-Slender Column Design

  • Edge column
  • 300mm square column
  • Axial Load 1500kN
  • Moment at top -40kNm
  • Moment at Bottom 45kNm
  • fck 30N/mm2
  • fyk 500N/mm2
  • Nominal Cover 25mm
  • Floor to Floor height 4250mm
  • Depth of the beam supported by the column 450mm

Mtop                     = -40kNm
Mbottom             = 45kNm
NEd                      = 1500kN

Clear height        = 4250-450
                           = 3800mm
Effective length  = lo
                            = factor * l
Factor                  = 0.85 (concise Eurocode 2, Table 5.1. This may more conservative).
lo                         = 0.85* 3800
                            = 3230mm

Slenderness λ   = lo/i

i                       = radios of gyration  = h/√12

λ  = lo/( h/√12 )  = 3.46*lo/h = 3.46*3230/300 = 37.3

Limiting Slenderness λlim

λlim                     = 20ABC/√n

A                      = 0.7 if effective creep factor is unknown

B                      = 1.1 if mechanical reinforcement ratio is unknown          

C                      = 1.7 – rm = 1.7-Mo1/Mo2

Mo1  = -40kNm

Mo2                  = 45kNm  where lMo2l ≥ lMo1l
C                      = 1.7 – (-40/45) = 2.9

n                       = NEd / (Ac*fcd)

fcd                    = fck / 1.5 = (30/1.5)*0.85 = 17
                        
n                       = 1500*1000 / (300*300*17)= 0.98 

λlim                     = 20*0.7*1.1*2.9/√0.98  = 45.1 

λlim > λ hence, column is not slender.

Calculation of design moments

MEd                 = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}

Mo2                 = Max {Mtop, Mbottom} + ei*NEd  = 45 + (3.23/400)*1500 ≥  Max(300/30, 20)*1500 = 57.1kNm  >  30kNm

Mo2                = Min{Mtop, Mbottom} + ei*NEd  = -40 + (3.23/400)*1500 ≥  Max(300/30, 20)*1500 = 27.9kNm

MoEd             = 0.6*Mo2+ 0.4*Mo1 ≥ 0.4*Mo2  = 0.6*57.1 + 0.4*(-27.9) ≥ 0.4*57.1  = 23.1 ≥ 22.84

M2                  = 0 , Column is not slender
MEd               = Max{Mo2, MoEd +M2, Mo1 + 0.5M2}= Max{57.1, 23.1 +0, -27.9 + 0.5*0} = 57.1kNm

MEd / [b*(h^2)*fck]  = (57.1*10^6) / [300*(300^2)*30] = 0.07                                                  
NEd / (b*h*fck)        = (1500*10^6) / (300*300*30 = 0.56

Assume 25mm diameter bars as main reinforcement and 10mm bars as shear links

d2                  = 25+10+25/2  = 47.5mm
d2/h                = 47.5 / 300    = 0.16

Note: d2/h = 0.20 chart is reffed to find the reinforcement area, but it is more conservative. Interpolation can be used to find the exact value.

As*fyk / b*h*fck      = 0.24                    

As    = 0.24*300*300*30 / 500 = 1296mm2

Provides four 25mm bars (As Provided 1964mm2)

Check for Biaxial Bending
Further check is not required if 
0.5 ≤ ( λy/ λz) ≤  2.0 For rectangular column
and
0.2 ≥ (ey/heq)/(ez/beq) ≥ 5.0
Here λy and λz are slenderness ratios

λy is nearly equal to λz
Therefore,  λy/λz is nearly equal to one.
Hence, λy/λz < 2 and > 0.5 OK

ey/heq  =  (MEdz / NEd) heq
ez/beq  =  (MEdy / NEd) beq

(ey/heq)/(ez/beq) = MEdz / MEdy  Here h=b=heq=beq, column is square

MEdz  = 45kNm
MEdy  = 30kNm 

Minimum moment, see the calculation of Mo2 for the method of calculation note: Moments due to imperfections need to be included only in the direction where they have the most unfavorable effect – Concise Eurocode 2

(ey/heq)/(ez/beq) = 45/30
                                = 1.5 > 0.2 and < 5
Therefore Biaxial check is required.

(MEdz / MRdz)^a + (MEdy / MRdy)^a ≤  1

MEdz            = 45kNm
MEdy           = 30kNm

MRdz and MRdy are the moment resistance in the respective directions, corresponding to an axial load NEd.

For symetric reinforcement section

MRdz            = MRdy

As Provided  = 1964mm2

As*fyk / b*h*fck      = 1964*500/(300*300*30) = 0.36
                            
NEd / (b*h*fck)        = 0.56 

From the chart d2/h =0.2 

MEd / [b*(h^2)*fck]   = 0.098

MEd                       = 0.098*300*300*300*30 = 79.38kNm                             

a                               = an exponent
a                               = 1.0 for NEd/NRd = 0.1
a                               = 1.5 for NEd/NRd = 0.7
NEd                          = 1500kN
NRd                          = Ac*fcd + As*fyd
NRd                          = 300*300*(0.85*30/1.5) + 1964*(500/1.15)  = 2383.9kN                          

NEd/NRd                = 1500/2383.9
                                 = 0.63
By interpolating
a                               = 1.44

(MEdz / MRdz)^a + (MEdy / MRdy)^a =  (45 / 79.39)^1.44 + (30 / 79.38)^1.44 = 0.69 <1
Hence, Check for biaxial bending is ok
Therefore, Provide four 25mm diameter bars.

Share
Prasad:

This website uses cookies.